
1

PGI® Compilers and Tools
PGI Premier Support at ORNL

14 APR 09
XT5 Workshop - ORNL

Dave Norton
dave.norton@pgroup.com

530.544.9075
www.hpfa.com

Craig Toepfer
craig.toepfer@pgroup.com

503.682.2806
www.pgroup.com

•  What is PGI Premier Support?

• What is the motivation behind Premier Support

• Common Optimization Opportunities

• ORNL Premier Support work

• How can you take advantage of the PGI/ORNL relationship?

• Questions and Answers

Outline of Today’s Topics

•  PGI Premier Support is a professional services program offered to select
customers with the intent of direct engineer to engineer engagement on
mission critical customer issues.
  Program components include:

 PGI Quick Start Seminar with additional customized training options
 A designated PGI technical contact within engineering
 PGI Tracker online inquiry tracking system
 Custom software patches and workarounds
 Interim PGI releases to address critical issues
 Custom libraries for runtime debugging
 Custom application performance analysis and tuning
 Custom compiler features

What is PGI Premier Support?

PGI presented the Quick Start Seminar, an on-site ½ day introduction to PGI
compilers and tools intended to cover best practices issues for getting code
up and running optimally and giving correct results in the shortest amount of
time, at ORNL in November

PGI offers additional training ranging from “hands-on interaction with
code” sessions to in depth training on customer specific performance
profiling, to customer specific application optimization, including assembly
language seminars.

Customized training can be incorporated into the Premier Services program
as desired by the customer.

If there is enough interest, we can present the Quick Start Seminar again.

PGI/ORNL Classroom Training

Customers – especially those with very large systems and specialty
applications – have motivation to understand in detail the performance of
their codes and have a willingness to include compiler expertise directly on
their code development teams.

Code team members who specialize in the science of the application often do
not have expertise in how a compiler views their application.

By adding a PGI compiler engineer to the application development team, the
team gets access to in depth compiler knowledge, knowledge about how the
compiler views code (or should view code) and therefore a team member
who can help guide the code development process to optimize application
performance while also working on the compiler so that is better understands
the code.

PGI Premier Support Motivation

Oak Ridge – Premier Support Example
Implemented PGI version of -finstrument_functions for James Rosinski. This is
needed to support a tool that he has developed called "GPTL: A tool for
characterizing parallel and serial application performance“

-Minstrument flag to the compiler

Generates instrumentation calls for entry and exit to functions. Just after function entry
 and just before function exit, the following profiling functions will be called with the
 address of the current function and its call site.

 void __cyg_profile_func_enter (void *this_fn,
 void *call_site);
 void __cyg_profile_func_exit (void *this_fn,
 void *call_site);
.
.

Many scientists an engineers take a semester long course on compilers in
college. Our engineers continued that study for the next 20 years.

They understand how to write code that the compiler can best ingest.

By examining the assembly code output, they understand when the compiler
isn’t generating as efficient code as it should.

There mission is to help you reach an optimal solution to writing,
maintaining and getting maximal performance from your code.

Premier support is here for you!

Put 20 years of compiler expertise
to work for you

•  OpenMP 3.0 Support in Fortran and C (C++ in 8.1)

•  Continued SPECFP06 and SPECINT06 Performance
•  PGPROF improvements
•  PGI Unified Binary enhancements
•  Common Compiler Feedback Format
•  Tuning for AMD Shanghai processors
•  Accelerator Compiler Beta
•  Improved C++ STL performance, features
•  Bug fixes

What’s New in PGI 8.0

 Common Performance Challenges
Vectorization on both Intel and AMD processors

 What is vectorization? Is my code vectorizing?

 Conflicts with C++ and F90 “ease of use”
 programming techniques. C and C++ pointer issues that
 prevent vectorization.

Multi-core issues
 Memory bandwidth
 MPI, OpenMP, and auto parallelization

IPA – Interproceedural Analysis and Inlining
 IPA and inline enabled libraries

10

What is Vectorization on x64 CPUs?
•  By a Programmer: writing or modifying

algorithms and loops to enable or maximize
generation of x64 packed Streaming SIMD
Extensions (SSE) instructions by a vectorizing
compiler

•  By a Compiler: identifying and transforming
loops to use packed SSE arithmetic instructions
which operate on more than one data element
per instruction

11

 127 64 63 0

 B1 | B0

 127 64 63 0

 A1 | A0

 add

 add

 127 64 63 0

 C1 | C0

Double-precision Packed SSE
Operations on x64 CPUs

12

Double-precision Packed SSE
Implementations on x64 CPUs

Cycle i: [A1|A0] [B1|B0]
 \ /
 A0+B0

Cycle i + 1: [A1|A0] [B1|B0]
 \ /

 A1+B1
 A0+B0

Cycle i + p - 1:

 A1+B1
 A0+B0
 \
 [.. |C0]

Cycle I + p:

 A1+B1
 /
 [C1|C0]

1st Gen
Cycle i: [A1|A0] [B1|B0]
 \ /
 [A1+B1|A0+B0]

Cycle i + 1:
 [A1+B1|A0+B0]

Cycle i + p:

 [A1+B1|A0+B0]

 \ /
 [C1|C0]

2nd Gen

13

350 !
351 ! Initialize vertex, similarity and coordinate arrays
352 !
353 Do Index = 1, NodeCount
354 IX = MOD (Index - 1, NodesX) + 1
355 IY = ((Index - 1) / NodesX) + 1
356 CoordX (IX, IY) = Position (1) + (IX - 1) * StepX
357 CoordY (IX, IY) = Position (2) + (IY - 1) * StepY
358 JetSim (Index) = SUM (Graph (:, :, Index) * &
359 & GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY)))
360 VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361 VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1
362 End Do

Vectorizable Loop in SPECFP2K FACEREC
Data is REAL*4

Inner loop at line 358 is vectorizable, can used packed SSE instructions

14

% pgf95 -fast -Minfo graphRoutines.f90
…
localmove:
 334, Loop unrolled 1 times (completely unrolled)
 343, Loop unrolled 2 times (completely unrolled)
 358, Generating vector sse code for inner loop
 364, Generating vector sse code for inner loop
 Generating vector sse code for inner loop
 392, Generating vector sse code for inner loop
 423, Generating vector sse code for inner loop
%

Use –Minfo to see Which Loops Vectorize

-fast Includes “–Mvect=sse -Mcache_align –Mnoframe -Mlre”

15

Scalar SSE: Vector SSE:

Facerec Scalar: 104.2 sec
Facerec Vector: 84.3 sec

.LB6_668:
lineno: 358
 movss -12(%rax),%xmm2
 movss -4(%rax),%xmm3
 subl $1,%edx
 mulss -12(%rcx),%xmm2
 addss %xmm0,%xmm2
 mulss -4(%rcx),%xmm3
 movss -8(%rax),%xmm0
 mulss -8(%rcx),%xmm0
 addss %xmm0,%xmm2
 movss (%rax),%xmm0
 addq $16,%rax
 addss %xmm3,%xmm2
 mulss (%rcx),%xmm0
 addq $16,%rcx
 testl %edx,%edx
 addss %xmm0,%xmm2
 movaps %xmm2,%xmm0
 jg .LB6_625

.LB6_1245:
lineno: 358
 movlps (%rdx,%rcx),%xmm2
 subl $8,%eax
 movlps 16(%rcx,%rdx),%xmm3
 prefetcht0 64(%rcx,%rsi)
 prefetcht0 64(%rcx,%rdx)
 movhps 8(%rcx,%rdx),%xmm2
 mulps (%rsi,%rcx),%xmm2
 movhps 24(%rcx,%rdx),%xmm3
 addps %xmm2,%xmm0
 mulps 16(%rcx,%rsi),%xmm3
 addq $32,%rcx
 testl %eax,%eax
 addps %xmm3,%xmm0
 jg .LB6_1245:

16

Benefits of Vectorization - Intel Core 2
Alegra Kernel Performance

PGI and Oak Ridge - Vectorization

•  For all of our fastmath library intrinsics, we created barcelona-tuned
versions for ORNL. This involved manually converting assembly movlpd
to movsd, a few other ops like movddup instead of a movlpd/movhpd
pair when appropriate. Created two entry points so both versions could
exist in a PGI unified binary. And then the appropriate compiler changes
to call the correct one. This ended up speeding up sine and cosine by
about 30% on a barcelona.

•  Created vector LOG10. This allowed some key loops in S3D to
vectorize thus enabling a significant speed up in the application.

18

Common Barriers to SSE Vectorization

  Potential Dependencies & C Pointers – Give compiler more
 info with –Msafeptr, pragmas, or restrict type qualifer

  Function Calls – Try inlining with –Minline or –Mipa=inline

  Type conversions – manually convert constants or use flags

  Large Number of Statements – Try –Mvect=nosizelimit

  Too few iterations – Usually better to unroll the loop

  Real dependencies – Must restructure loop, if possible

Vectorizable C Code Fragment?
217 void func4(float *u1, float *u2, float *u3, …
 …
221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Minfo –Mneginfo functions.c
func4:
 221, Loop unrolled 4 times
 221, Loop not vectorized due to data dependency
 223, Loop not vectorized due to data dependency

Pointer Arguments Inhibit Vectorization

% pgcc –fastsse –Msafeptr –Minfo functions.c
func4:
 221, Generated vector SSE code for inner loop
 Generated 3 prefetch instructions for this loop
 223, Unrolled inner loop 4 times

217 void func4(float *u1, float *u2, float *u3, …
 …
221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

C Constant Inhibits Vectorization

% pgcc –fastsse –Msafeptr –Mfcon –Minfo functions.c
func4:
 221, Generated vector SSE code for inner loop
 Generated 3 prefetch instructions for this loop
 223, Generated vector SSE code for inner loop
 Generated 4 prefetch instructions for this loop

217 void func4(float *u1, float *u2, float *u3, …
 …
221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

22

-Msafeptr vs.Pragma vs. restrict
(sledgehammer vs. scalpel)

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all All pointers are safe

arg Argument pointers are safe

local local pointers are safe

static static local pointers are safe

global global pointers are safe

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop

3 Steps to Multi-core
Performance

1) Optimize single-core performance

2) Enable multi-core auto-parallelization

3) Tune for multi-core with OpenMP
directive-based parallelization

1. Optimize Single-core Performance

PGI compilers give realtime optimization hints,
and support many tuning options and
directives

 See http://www.pgroup.com/lit/
pgi_article_tuning.pdf for generic tuning tips

 See http://www.pgroup.com/lit/
pgi_article_CUG07.pdf for C++ tuning tips

Use PGPROF or other profilers to reveal single-
core performance issues

Conflicts with C++ and F90 “ease of use”
programming techniques. C and C++ pointer
issues that prevent vectorization.

Modern programming techniques in C++ and
occasionally in object oriented F90 code lead
to levels of code obfuscation that the compiler
simply is unable to unwind.

Alegra – C++ Challenges (con’t)
For this dataset, the value of mat_max is 21, and the number of
 element blocks(mesh->Num_Element_Blocks()) is 1. The LOCAL_ELEMENT_LOOP
 is excuted 160000 times.

 Using the debugger, the three lines of code:

 1) Real volume_old = el->Volume_Fraction(m);

 The assembly instructions generated for this line of code
 dereferenced memory 4 times as follows:

 movq 160(%rcx), %rdx <--- Address of el.material_data
 movq (%rdx,%rax,8), %rsi <--- Address of el.material_data[m].material
 movq 40(%rsi), %rax <--- Address of el.material_data[m].material.data[m']
 movl (%rax), %xmm0 <--- Value of volume_old

Alegra – C++ Challenges (con’t)
2) Real* scratch = el->Scalar_Array(REMAP_SCRATCH);

 The assembly instructions generated for this line of code
 dereferenced memory 2 times as follows:

 movq 8(%rdx,%rcx), %rsi <--- Address of el.data
 leaq (%rsi,%rax,8), %rdi <--- Address of el.data+m

 3) Material_Data* pmat_data = el->Material_Data_Ptr(m);

 The assembly instructions generated for this line of code
 dereferenced memory 2 times as follows:

 movq 160(%rcx), %r9 <--- Address of el.material_data
 movq (%r9,%r8,8), %rax <--- Address of el.material_data[m]

28

Remedies for Alegra pointer issues

 Short circuiting the pointer chain from one time step to
the next

 Rearrange the location of critical element in the data
structure so that element data is in cache when data
structure is first referenced

PGI and Oak Ridge – Listing Files

•  ORNL requested a feature which combined the output of
compiler messages and program files.

–  Users can get information about what the optimizations
that compiler makes, and the reasons it is unable to make
other optimizations by using the compile time flags:

-Minfo and –Mneginfo

–  At the request of ORNL, users can now see these
messages along with the code that is is causing the
messages by using the -Minfo=ccff

Demo: Initial Build/Run

Demo: Profile of Initial Run

Demo: Build/Run with -Msafeptr

Demo: Profile of –Msafeptr Run

Demo: Build/Run with -Mfcon

Demo: Profile of –Mfcon Run

-Mconcur[=option[,option]] where option is:

 [no]altcode:<n> [Don’t] Generate alternate serial code for parallel loops

 dist:block Parallelize with block distribution (default)

 dist:cyclic Parallelize with cyclic distribution

 cncall Loops with calls are candidates for parallelization

 [no]assoc Disable/Enable parallelization of loops with reductions

innermost Enable parallelization of innermost loops

levels:<n> Parallelize loops nested at most n levels deep

bind Bind threads to cores. Must be specified at link time

2. Enable Multi-core Auto-parallelization

SPEC OMP2001 314.MGRID_M

3D Multigrid Solver
% pgf95 –Mconcur –Minfo –fast mgrid.f
…
resid:
 366, Parallel code for non-innermost loop activated
 if loop count >= 33; block distribution
 368, 4 loop-carried redundant expressions removed
 with 12 operations and 16 arrays
 Generated 4 alternate loops for the inner loop
 Generated vector SSE code for inner loop
 Generated 8 prefetch instructions for this loop
 Generated vector SSE code for inner loop
 Generated 8 prefetch instructions for this loop

314.MGRID_M Benchmark
Main Loop

 DO 10 I3=2, N-1
 DO 10 I2=2,N-1
 DO 10 I1=2,N-1
10 R(I1,I2,I3) = V(I1,I2,I3)
 & -A(0)*(U(I1,I2,I3))
 & -A(1)*(U(I1-1,I2,I3)+U(I1+1,I2,I3)
 & +U(I1,I2-1,I3)+U(I1,I2+1,I3)
 & +U(I1,I2,I3-1)+U(I1,I2,I3+1))
 & -A(2)*(U(I1-1,I2-1,I3)+U(I1+1,I2-1,I3)
 & +U(I1-1,I2+1,I3)+U(I1+1,I2+1,I3)
 & +U(I1,I2-1,I3-1)+U(I1,I2+1,I3-1)
 & +U(I1,I2-1,I3+1)+U(I1,I2+1,I3+1)
 & +U(I1-1,I2,I3-1)+U(I1-1,I2,I3+1)
 & +U(I1+1,I2,I3-1)+U(I1+1,I2,I3+1))
 & -A(3)*(U(I1-1,I2-1,I3-1)+U(I1+1,I2-1,I3-1)
 & +U(I1-1,I2+1,I3-1)+U(I1+1,I2+1,I3-1)
 & +U(I1-1,I2-1,I3+1)+U(I1+1,I2-1,I3+1)
 & +U(I1-1,I2+1,I3+1)+U(I1+1,I2+1,I3+1))

Auto-parallel 314.MGRID_M Runtime
 on Single Socket Quad-core AMD

Opteron

NUM_THREADS Runtime
(seconds) Speed-up

1 208

2 116 1.8

4 100 2.1

3. Tune for Multi-core with OpenMP
  PGI supports full native OpenMP 3.0 parallel programming
directives/pragmas/runtime for F95 & C

  C++ support in next major release

  PGI provides environment variables to maximize
 OpenMP performance (thread scheduling, binding, etc)

  Use –mp option to enable OpenMP compilation

  OpenMP programs compiled w/out –mp “just work”

  –Mconcur and –mp can be used together

SPEC OMP2001 314.MGRID_M

3D Multigrid Solver
% pgf95 –mp –Minfo –fastsse mgrid.f
…
resid:
 360, Parallel region activated
 366, Parallel loop activated with static block schedule
 368, 4 loop-carried redundant expressions removed
 with 12 operations and 16 arrays
 Generated 4 alternate loops for the inner loop
 Generated vector SSE code for inner loop
 Generated 8 prefetch instructions for this loop
 …
 382, Parallel region terminated

OpenMP 314.MGRID_M Runtime
 on Single Socket Quad-core AMD

Opteron

NUM_THREADS Runtime
(seconds) Speed-up

1 205

2 113 1.8

4 97 2.1

1 Step to Multi-core/Multi-Socket
Performance?

1)  Increase the thread count and rerun
the application…

% export OMP_NUM_THREADS=8
% a.out

314.MGRID_M Runtime
 on Dual Socket Quad-core AMD Opteron

NUM_THREADS Auto-Par executable
Runtime(seconds)

OpenMP executable
Runtime(seconds)

1 208 205

2 116 113

4 100 97

8 92 90

Multi-Socket Introduces Potential NUMA
Issues

Physical memory location based on first touch

Use /usr/bin/numactl –hardware to identify potential
memory hotspots while application is running

Minimize data initialization in serial regions of code

Modified 314.MGRID_M Runtime
 on Dual Socket Quad-core AMD Opteron

NUM_THREADS Auto-Par executable
Runtime(seconds)

OpenMP executable
Runtime(seconds)

1 208 205

2 116 113

4 100 97

8 55 53

  Use correct target processor, -tp barcelona-64

  Vectorization and single core performance is a good start

  Compiler Feedback: a positive force in HPC SW Evolution

  The PGI -Mconcur flag can handle simple cases, and might
surprise you with where it can find parallelism

  OpenMP gives finer control, is supported everywhere

  Gather some profiling data on where cache misses or other
delays occur

Multi-core Performance Guidelines

  Design algorithms that minimize data movement and
maximize data movement efficiency, rather than minimizing
computations. FLOPS are free, bandwidth is precious.

  Strip-mining or other caching techniques (tiling, blocking)
can be important.

  Use directives/pragmas/compiler options for fine-tuned
control over memory-tuning optimization.

  Pay attention to NUMA effects when running on multi-
socket nodes. Control location of thread execution using
environment variables.

Multi-core Performance Guidelines

49

What can Interprocedural Analysis and
Optimization with –Mipa do for You?

  Interprocedural constant propagation

  Pointer disambiguation

  Alignment detection, Alignment propagation

  Global variable mod/ref detection

  F90 shape propagation

  Function inlining

  IPA optimization of libraries, including inlining

50

Effect of IPA on
the WUPWISE Benchmark

PGF95 Compiler Options Execution Time in Seconds

–fast 156.49
–fast –Mipa=fast 121.65
–fast –Mipa=fast,inline 91.72

  –Mipa=fast => constant propagation => compiler sees complex
 matrices are all 4x3 => completely unrolls loops

  –Mipa=fast,inline => small matrix multiplies are all inlined

51

Using Interprocedural Analysis
  Must be used at both compile time and link time

  Non-disruptive to development process – edit/build/run

  Speed-ups of 5% - 10% are common

  –Mipa=safe:<name> - safe to optimize functions which call or are
called from unknown function/library name

  –Mipa=libopt – perform IPA optimizations on libraries

  –Mipa=libinline – perform IPA inlining from libraries

52

Other C++ recommendations

  Encapsulation, Data Hiding - small functions, inline!

  Exception Handling – use –no_exceptions until 7.0

  Overloaded operators, overloaded functions - okay

  Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits?

  Templates, Generic Programming – now okay

  Inheritance, polymorphism, virtual functions – runtime lookup
or check, no inlining, potential performance penalties

53

Explicit Function Inlining
–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
 size:<n> | levels:<n>]

[lib:]<inlib> Inline extracted functions from inlib

[name:]<func> Inline function func

except:<func> Do not inline function func

size:<n> Inline only functions smaller than n
 statements (approximate)

levels:<n> Inline n levels of functions

For C++ Codes, PGI Recommends IPA-based
inlining or –Minline=levels:10!

54

 Miscellaneous Optimizations (1)

  –Mfprelaxed – single-precision sqrt, rsqrt, div performed
 using reduced-precision reciprocal approximation

  –lacml and –lacml_mp – link in the AMD Core Math Library

  –Mprefetch=d:<p>,n:<q> – control prefetching distance,
 max number of prefetch instructions per loop

  –tp k8-32 – can result in big performance win on some
 C/C++ codes that don’t require > 2GB addressing;
 pointer and long data become 32-bits

55

 Miscellaneous Optimizations (2)
  –O3 – more aggressive hoisting and scalar replacement;
 not part of –fastsse, always time your code to make sure
 it’s faster

  For C++ codes: ––no_exceptions –zc_eh

  –M[no]movnt – disable / force non-temporal moves

  –V[version] to switch between PGI releases at file level

  –Mvect=noaltcode – disable multiple versions of loops

  Delivers education to better use compilers and tools

  Provides direct scientist to engineer interaction

  Provides custom compiler and library work

  Provides a compiler engineer for your code development team

  Results in faster application results!

Take advantage of your Premier Support opportunities!

PGI Premier Conclusions

57

